3.6.38 \(\int \frac {(a+c x^2)^{3/2}}{d+e x} \, dx\) [538]

Optimal. Leaf size=159 \[ \frac {\left (2 \left (c d^2+a e^2\right )-c d e x\right ) \sqrt {a+c x^2}}{2 e^3}+\frac {\left (a+c x^2\right )^{3/2}}{3 e}-\frac {\sqrt {c} d \left (2 c d^2+3 a e^2\right ) \tanh ^{-1}\left (\frac {\sqrt {c} x}{\sqrt {a+c x^2}}\right )}{2 e^4}-\frac {\left (c d^2+a e^2\right )^{3/2} \tanh ^{-1}\left (\frac {a e-c d x}{\sqrt {c d^2+a e^2} \sqrt {a+c x^2}}\right )}{e^4} \]

[Out]

1/3*(c*x^2+a)^(3/2)/e-(a*e^2+c*d^2)^(3/2)*arctanh((-c*d*x+a*e)/(a*e^2+c*d^2)^(1/2)/(c*x^2+a)^(1/2))/e^4-1/2*d*
(3*a*e^2+2*c*d^2)*arctanh(x*c^(1/2)/(c*x^2+a)^(1/2))*c^(1/2)/e^4+1/2*(-c*d*e*x+2*a*e^2+2*c*d^2)*(c*x^2+a)^(1/2
)/e^3

________________________________________________________________________________________

Rubi [A]
time = 0.12, antiderivative size = 159, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 6, integrand size = 19, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.316, Rules used = {749, 829, 858, 223, 212, 739} \begin {gather*} -\frac {\left (a e^2+c d^2\right )^{3/2} \tanh ^{-1}\left (\frac {a e-c d x}{\sqrt {a+c x^2} \sqrt {a e^2+c d^2}}\right )}{e^4}-\frac {\sqrt {c} d \left (3 a e^2+2 c d^2\right ) \tanh ^{-1}\left (\frac {\sqrt {c} x}{\sqrt {a+c x^2}}\right )}{2 e^4}+\frac {\sqrt {a+c x^2} \left (2 \left (a e^2+c d^2\right )-c d e x\right )}{2 e^3}+\frac {\left (a+c x^2\right )^{3/2}}{3 e} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(a + c*x^2)^(3/2)/(d + e*x),x]

[Out]

((2*(c*d^2 + a*e^2) - c*d*e*x)*Sqrt[a + c*x^2])/(2*e^3) + (a + c*x^2)^(3/2)/(3*e) - (Sqrt[c]*d*(2*c*d^2 + 3*a*
e^2)*ArcTanh[(Sqrt[c]*x)/Sqrt[a + c*x^2]])/(2*e^4) - ((c*d^2 + a*e^2)^(3/2)*ArcTanh[(a*e - c*d*x)/(Sqrt[c*d^2
+ a*e^2]*Sqrt[a + c*x^2])])/e^4

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 223

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 739

Int[1/(((d_) + (e_.)*(x_))*Sqrt[(a_) + (c_.)*(x_)^2]), x_Symbol] :> -Subst[Int[1/(c*d^2 + a*e^2 - x^2), x], x,
 (a*e - c*d*x)/Sqrt[a + c*x^2]] /; FreeQ[{a, c, d, e}, x]

Rule 749

Int[((d_) + (e_.)*(x_))^(m_)*((a_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(d + e*x)^(m + 1)*((a + c*x^2)^p/(e
*(m + 2*p + 1))), x] + Dist[2*(p/(e*(m + 2*p + 1))), Int[(d + e*x)^m*Simp[a*e - c*d*x, x]*(a + c*x^2)^(p - 1),
 x], x] /; FreeQ[{a, c, d, e, m}, x] && NeQ[c*d^2 + a*e^2, 0] && GtQ[p, 0] && NeQ[m + 2*p + 1, 0] && ( !Ration
alQ[m] || LtQ[m, 1]) &&  !ILtQ[m + 2*p, 0] && IntQuadraticQ[a, 0, c, d, e, m, p, x]

Rule 829

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[(d + e*x)^(m
 + 1)*(c*e*f*(m + 2*p + 2) - g*c*d*(2*p + 1) + g*c*e*(m + 2*p + 1)*x)*((a + c*x^2)^p/(c*e^2*(m + 2*p + 1)*(m +
 2*p + 2))), x] + Dist[2*(p/(c*e^2*(m + 2*p + 1)*(m + 2*p + 2))), Int[(d + e*x)^m*(a + c*x^2)^(p - 1)*Simp[f*a
*c*e^2*(m + 2*p + 2) + a*c*d*e*g*m - (c^2*f*d*e*(m + 2*p + 2) - g*(c^2*d^2*(2*p + 1) + a*c*e^2*(m + 2*p + 1)))
*x, x], x], x] /; FreeQ[{a, c, d, e, f, g, m}, x] && NeQ[c*d^2 + a*e^2, 0] && GtQ[p, 0] && (IntegerQ[p] ||  !R
ationalQ[m] || (GeQ[m, -1] && LtQ[m, 0])) &&  !ILtQ[m + 2*p, 0] && (IntegerQ[m] || IntegerQ[p] || IntegersQ[2*
m, 2*p])

Rule 858

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Dist[g/e, Int[(d
+ e*x)^(m + 1)*(a + c*x^2)^p, x], x] + Dist[(e*f - d*g)/e, Int[(d + e*x)^m*(a + c*x^2)^p, x], x] /; FreeQ[{a,
c, d, e, f, g, m, p}, x] && NeQ[c*d^2 + a*e^2, 0] &&  !IGtQ[m, 0]

Rubi steps

\begin {align*} \int \frac {\left (a+c x^2\right )^{3/2}}{d+e x} \, dx &=\frac {\left (a+c x^2\right )^{3/2}}{3 e}+\frac {\int \frac {(a e-c d x) \sqrt {a+c x^2}}{d+e x} \, dx}{e}\\ &=\frac {\left (2 \left (c d^2+a e^2\right )-c d e x\right ) \sqrt {a+c x^2}}{2 e^3}+\frac {\left (a+c x^2\right )^{3/2}}{3 e}+\frac {\int \frac {a c e \left (c d^2+2 a e^2\right )-c^2 d \left (2 c d^2+3 a e^2\right ) x}{(d+e x) \sqrt {a+c x^2}} \, dx}{2 c e^3}\\ &=\frac {\left (2 \left (c d^2+a e^2\right )-c d e x\right ) \sqrt {a+c x^2}}{2 e^3}+\frac {\left (a+c x^2\right )^{3/2}}{3 e}+\frac {\left (c d^2+a e^2\right )^2 \int \frac {1}{(d+e x) \sqrt {a+c x^2}} \, dx}{e^4}-\frac {\left (c d \left (2 c d^2+3 a e^2\right )\right ) \int \frac {1}{\sqrt {a+c x^2}} \, dx}{2 e^4}\\ &=\frac {\left (2 \left (c d^2+a e^2\right )-c d e x\right ) \sqrt {a+c x^2}}{2 e^3}+\frac {\left (a+c x^2\right )^{3/2}}{3 e}-\frac {\left (c d^2+a e^2\right )^2 \text {Subst}\left (\int \frac {1}{c d^2+a e^2-x^2} \, dx,x,\frac {a e-c d x}{\sqrt {a+c x^2}}\right )}{e^4}-\frac {\left (c d \left (2 c d^2+3 a e^2\right )\right ) \text {Subst}\left (\int \frac {1}{1-c x^2} \, dx,x,\frac {x}{\sqrt {a+c x^2}}\right )}{2 e^4}\\ &=\frac {\left (2 \left (c d^2+a e^2\right )-c d e x\right ) \sqrt {a+c x^2}}{2 e^3}+\frac {\left (a+c x^2\right )^{3/2}}{3 e}-\frac {\sqrt {c} d \left (2 c d^2+3 a e^2\right ) \tanh ^{-1}\left (\frac {\sqrt {c} x}{\sqrt {a+c x^2}}\right )}{2 e^4}-\frac {\left (c d^2+a e^2\right )^{3/2} \tanh ^{-1}\left (\frac {a e-c d x}{\sqrt {c d^2+a e^2} \sqrt {a+c x^2}}\right )}{e^4}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.47, size = 155, normalized size = 0.97 \begin {gather*} \frac {e \sqrt {a+c x^2} \left (6 c d^2+8 a e^2-3 c d e x+2 c e^2 x^2\right )-12 \left (-c d^2-a e^2\right )^{3/2} \tan ^{-1}\left (\frac {\sqrt {c} (d+e x)-e \sqrt {a+c x^2}}{\sqrt {-c d^2-a e^2}}\right )+3 \sqrt {c} d \left (2 c d^2+3 a e^2\right ) \log \left (-\sqrt {c} x+\sqrt {a+c x^2}\right )}{6 e^4} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(a + c*x^2)^(3/2)/(d + e*x),x]

[Out]

(e*Sqrt[a + c*x^2]*(6*c*d^2 + 8*a*e^2 - 3*c*d*e*x + 2*c*e^2*x^2) - 12*(-(c*d^2) - a*e^2)^(3/2)*ArcTan[(Sqrt[c]
*(d + e*x) - e*Sqrt[a + c*x^2])/Sqrt[-(c*d^2) - a*e^2]] + 3*Sqrt[c]*d*(2*c*d^2 + 3*a*e^2)*Log[-(Sqrt[c]*x) + S
qrt[a + c*x^2]])/(6*e^4)

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(495\) vs. \(2(136)=272\).
time = 0.46, size = 496, normalized size = 3.12

method result size
risch \(\frac {\left (2 c \,e^{2} x^{2}-3 c d e x +8 e^{2} a +6 c \,d^{2}\right ) \sqrt {c \,x^{2}+a}}{6 e^{3}}-\frac {3 \sqrt {c}\, d \ln \left (\sqrt {c}\, x +\sqrt {c \,x^{2}+a}\right ) a}{2 e^{2}}-\frac {c^{\frac {3}{2}} d^{3} \ln \left (\sqrt {c}\, x +\sqrt {c \,x^{2}+a}\right )}{e^{4}}-\frac {\ln \left (\frac {\frac {2 e^{2} a +2 c \,d^{2}}{e^{2}}-\frac {2 c d \left (x +\frac {d}{e}\right )}{e}+2 \sqrt {\frac {e^{2} a +c \,d^{2}}{e^{2}}}\, \sqrt {c \left (x +\frac {d}{e}\right )^{2}-\frac {2 c d \left (x +\frac {d}{e}\right )}{e}+\frac {e^{2} a +c \,d^{2}}{e^{2}}}}{x +\frac {d}{e}}\right ) a^{2}}{e \sqrt {\frac {e^{2} a +c \,d^{2}}{e^{2}}}}-\frac {2 \ln \left (\frac {\frac {2 e^{2} a +2 c \,d^{2}}{e^{2}}-\frac {2 c d \left (x +\frac {d}{e}\right )}{e}+2 \sqrt {\frac {e^{2} a +c \,d^{2}}{e^{2}}}\, \sqrt {c \left (x +\frac {d}{e}\right )^{2}-\frac {2 c d \left (x +\frac {d}{e}\right )}{e}+\frac {e^{2} a +c \,d^{2}}{e^{2}}}}{x +\frac {d}{e}}\right ) a c \,d^{2}}{e^{3} \sqrt {\frac {e^{2} a +c \,d^{2}}{e^{2}}}}-\frac {\ln \left (\frac {\frac {2 e^{2} a +2 c \,d^{2}}{e^{2}}-\frac {2 c d \left (x +\frac {d}{e}\right )}{e}+2 \sqrt {\frac {e^{2} a +c \,d^{2}}{e^{2}}}\, \sqrt {c \left (x +\frac {d}{e}\right )^{2}-\frac {2 c d \left (x +\frac {d}{e}\right )}{e}+\frac {e^{2} a +c \,d^{2}}{e^{2}}}}{x +\frac {d}{e}}\right ) c^{2} d^{4}}{e^{5} \sqrt {\frac {e^{2} a +c \,d^{2}}{e^{2}}}}\) \(489\)
default \(\frac {\frac {\left (c \left (x +\frac {d}{e}\right )^{2}-\frac {2 c d \left (x +\frac {d}{e}\right )}{e}+\frac {e^{2} a +c \,d^{2}}{e^{2}}\right )^{\frac {3}{2}}}{3}-\frac {c d \left (\frac {\left (2 c \left (x +\frac {d}{e}\right )-\frac {2 c d}{e}\right ) \sqrt {c \left (x +\frac {d}{e}\right )^{2}-\frac {2 c d \left (x +\frac {d}{e}\right )}{e}+\frac {e^{2} a +c \,d^{2}}{e^{2}}}}{4 c}+\frac {\left (\frac {4 c \left (e^{2} a +c \,d^{2}\right )}{e^{2}}-\frac {4 c^{2} d^{2}}{e^{2}}\right ) \ln \left (\frac {-\frac {c d}{e}+c \left (x +\frac {d}{e}\right )}{\sqrt {c}}+\sqrt {c \left (x +\frac {d}{e}\right )^{2}-\frac {2 c d \left (x +\frac {d}{e}\right )}{e}+\frac {e^{2} a +c \,d^{2}}{e^{2}}}\right )}{8 c^{\frac {3}{2}}}\right )}{e}+\frac {\left (e^{2} a +c \,d^{2}\right ) \left (\sqrt {c \left (x +\frac {d}{e}\right )^{2}-\frac {2 c d \left (x +\frac {d}{e}\right )}{e}+\frac {e^{2} a +c \,d^{2}}{e^{2}}}-\frac {\sqrt {c}\, d \ln \left (\frac {-\frac {c d}{e}+c \left (x +\frac {d}{e}\right )}{\sqrt {c}}+\sqrt {c \left (x +\frac {d}{e}\right )^{2}-\frac {2 c d \left (x +\frac {d}{e}\right )}{e}+\frac {e^{2} a +c \,d^{2}}{e^{2}}}\right )}{e}-\frac {\left (e^{2} a +c \,d^{2}\right ) \ln \left (\frac {\frac {2 e^{2} a +2 c \,d^{2}}{e^{2}}-\frac {2 c d \left (x +\frac {d}{e}\right )}{e}+2 \sqrt {\frac {e^{2} a +c \,d^{2}}{e^{2}}}\, \sqrt {c \left (x +\frac {d}{e}\right )^{2}-\frac {2 c d \left (x +\frac {d}{e}\right )}{e}+\frac {e^{2} a +c \,d^{2}}{e^{2}}}}{x +\frac {d}{e}}\right )}{e^{2} \sqrt {\frac {e^{2} a +c \,d^{2}}{e^{2}}}}\right )}{e^{2}}}{e}\) \(496\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((c*x^2+a)^(3/2)/(e*x+d),x,method=_RETURNVERBOSE)

[Out]

1/e*(1/3*(c*(x+d/e)^2-2*c*d/e*(x+d/e)+(a*e^2+c*d^2)/e^2)^(3/2)-c*d/e*(1/4*(2*c*(x+d/e)-2*c*d/e)/c*(c*(x+d/e)^2
-2*c*d/e*(x+d/e)+(a*e^2+c*d^2)/e^2)^(1/2)+1/8*(4*c*(a*e^2+c*d^2)/e^2-4*c^2*d^2/e^2)/c^(3/2)*ln((-c*d/e+c*(x+d/
e))/c^(1/2)+(c*(x+d/e)^2-2*c*d/e*(x+d/e)+(a*e^2+c*d^2)/e^2)^(1/2)))+(a*e^2+c*d^2)/e^2*((c*(x+d/e)^2-2*c*d/e*(x
+d/e)+(a*e^2+c*d^2)/e^2)^(1/2)-c^(1/2)*d/e*ln((-c*d/e+c*(x+d/e))/c^(1/2)+(c*(x+d/e)^2-2*c*d/e*(x+d/e)+(a*e^2+c
*d^2)/e^2)^(1/2))-(a*e^2+c*d^2)/e^2/((a*e^2+c*d^2)/e^2)^(1/2)*ln((2*(a*e^2+c*d^2)/e^2-2*c*d/e*(x+d/e)+2*((a*e^
2+c*d^2)/e^2)^(1/2)*(c*(x+d/e)^2-2*c*d/e*(x+d/e)+(a*e^2+c*d^2)/e^2)^(1/2))/(x+d/e))))

________________________________________________________________________________________

Maxima [A]
time = 0.29, size = 149, normalized size = 0.94 \begin {gather*} -c^{\frac {3}{2}} d^{3} \operatorname {arsinh}\left (\frac {c x}{\sqrt {a c}}\right ) e^{\left (-4\right )} - \frac {1}{2} \, \sqrt {c x^{2} + a} c d x e^{\left (-2\right )} - \frac {3}{2} \, a \sqrt {c} d \operatorname {arsinh}\left (\frac {c x}{\sqrt {a c}}\right ) e^{\left (-2\right )} + \sqrt {c x^{2} + a} c d^{2} e^{\left (-3\right )} + {\left (c d^{2} e^{\left (-2\right )} + a\right )}^{\frac {3}{2}} \operatorname {arsinh}\left (\frac {c d x}{\sqrt {a c} {\left | x e + d \right |}} - \frac {a e}{\sqrt {a c} {\left | x e + d \right |}}\right ) e^{\left (-1\right )} + \frac {1}{3} \, {\left (c x^{2} + a\right )}^{\frac {3}{2}} e^{\left (-1\right )} + \sqrt {c x^{2} + a} a e^{\left (-1\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x^2+a)^(3/2)/(e*x+d),x, algorithm="maxima")

[Out]

-c^(3/2)*d^3*arcsinh(c*x/sqrt(a*c))*e^(-4) - 1/2*sqrt(c*x^2 + a)*c*d*x*e^(-2) - 3/2*a*sqrt(c)*d*arcsinh(c*x/sq
rt(a*c))*e^(-2) + sqrt(c*x^2 + a)*c*d^2*e^(-3) + (c*d^2*e^(-2) + a)^(3/2)*arcsinh(c*d*x/(sqrt(a*c)*abs(x*e + d
)) - a*e/(sqrt(a*c)*abs(x*e + d)))*e^(-1) + 1/3*(c*x^2 + a)^(3/2)*e^(-1) + sqrt(c*x^2 + a)*a*e^(-1)

________________________________________________________________________________________

Fricas [A]
time = 4.14, size = 749, normalized size = 4.71 \begin {gather*} \left [\frac {1}{12} \, {\left (3 \, {\left (2 \, c d^{3} + 3 \, a d e^{2}\right )} \sqrt {c} \log \left (-2 \, c x^{2} + 2 \, \sqrt {c x^{2} + a} \sqrt {c} x - a\right ) + 6 \, {\left (c d^{2} + a e^{2}\right )}^{\frac {3}{2}} \log \left (-\frac {2 \, c^{2} d^{2} x^{2} - 2 \, a c d x e + a c d^{2} + 2 \, \sqrt {c d^{2} + a e^{2}} {\left (c d x - a e\right )} \sqrt {c x^{2} + a} + {\left (a c x^{2} + 2 \, a^{2}\right )} e^{2}}{x^{2} e^{2} + 2 \, d x e + d^{2}}\right ) - 2 \, {\left (3 \, c d x e^{2} - 6 \, c d^{2} e - 2 \, {\left (c x^{2} + 4 \, a\right )} e^{3}\right )} \sqrt {c x^{2} + a}\right )} e^{\left (-4\right )}, \frac {1}{6} \, {\left (3 \, {\left (2 \, c d^{3} + 3 \, a d e^{2}\right )} \sqrt {-c} \arctan \left (\frac {\sqrt {-c} x}{\sqrt {c x^{2} + a}}\right ) + 3 \, {\left (c d^{2} + a e^{2}\right )}^{\frac {3}{2}} \log \left (-\frac {2 \, c^{2} d^{2} x^{2} - 2 \, a c d x e + a c d^{2} + 2 \, \sqrt {c d^{2} + a e^{2}} {\left (c d x - a e\right )} \sqrt {c x^{2} + a} + {\left (a c x^{2} + 2 \, a^{2}\right )} e^{2}}{x^{2} e^{2} + 2 \, d x e + d^{2}}\right ) - {\left (3 \, c d x e^{2} - 6 \, c d^{2} e - 2 \, {\left (c x^{2} + 4 \, a\right )} e^{3}\right )} \sqrt {c x^{2} + a}\right )} e^{\left (-4\right )}, \frac {1}{12} \, {\left (12 \, {\left (c d^{2} + a e^{2}\right )} \sqrt {-c d^{2} - a e^{2}} \arctan \left (-\frac {\sqrt {-c d^{2} - a e^{2}} {\left (c d x - a e\right )} \sqrt {c x^{2} + a}}{c^{2} d^{2} x^{2} + a c d^{2} + {\left (a c x^{2} + a^{2}\right )} e^{2}}\right ) + 3 \, {\left (2 \, c d^{3} + 3 \, a d e^{2}\right )} \sqrt {c} \log \left (-2 \, c x^{2} + 2 \, \sqrt {c x^{2} + a} \sqrt {c} x - a\right ) - 2 \, {\left (3 \, c d x e^{2} - 6 \, c d^{2} e - 2 \, {\left (c x^{2} + 4 \, a\right )} e^{3}\right )} \sqrt {c x^{2} + a}\right )} e^{\left (-4\right )}, \frac {1}{6} \, {\left (6 \, {\left (c d^{2} + a e^{2}\right )} \sqrt {-c d^{2} - a e^{2}} \arctan \left (-\frac {\sqrt {-c d^{2} - a e^{2}} {\left (c d x - a e\right )} \sqrt {c x^{2} + a}}{c^{2} d^{2} x^{2} + a c d^{2} + {\left (a c x^{2} + a^{2}\right )} e^{2}}\right ) + 3 \, {\left (2 \, c d^{3} + 3 \, a d e^{2}\right )} \sqrt {-c} \arctan \left (\frac {\sqrt {-c} x}{\sqrt {c x^{2} + a}}\right ) - {\left (3 \, c d x e^{2} - 6 \, c d^{2} e - 2 \, {\left (c x^{2} + 4 \, a\right )} e^{3}\right )} \sqrt {c x^{2} + a}\right )} e^{\left (-4\right )}\right ] \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x^2+a)^(3/2)/(e*x+d),x, algorithm="fricas")

[Out]

[1/12*(3*(2*c*d^3 + 3*a*d*e^2)*sqrt(c)*log(-2*c*x^2 + 2*sqrt(c*x^2 + a)*sqrt(c)*x - a) + 6*(c*d^2 + a*e^2)^(3/
2)*log(-(2*c^2*d^2*x^2 - 2*a*c*d*x*e + a*c*d^2 + 2*sqrt(c*d^2 + a*e^2)*(c*d*x - a*e)*sqrt(c*x^2 + a) + (a*c*x^
2 + 2*a^2)*e^2)/(x^2*e^2 + 2*d*x*e + d^2)) - 2*(3*c*d*x*e^2 - 6*c*d^2*e - 2*(c*x^2 + 4*a)*e^3)*sqrt(c*x^2 + a)
)*e^(-4), 1/6*(3*(2*c*d^3 + 3*a*d*e^2)*sqrt(-c)*arctan(sqrt(-c)*x/sqrt(c*x^2 + a)) + 3*(c*d^2 + a*e^2)^(3/2)*l
og(-(2*c^2*d^2*x^2 - 2*a*c*d*x*e + a*c*d^2 + 2*sqrt(c*d^2 + a*e^2)*(c*d*x - a*e)*sqrt(c*x^2 + a) + (a*c*x^2 +
2*a^2)*e^2)/(x^2*e^2 + 2*d*x*e + d^2)) - (3*c*d*x*e^2 - 6*c*d^2*e - 2*(c*x^2 + 4*a)*e^3)*sqrt(c*x^2 + a))*e^(-
4), 1/12*(12*(c*d^2 + a*e^2)*sqrt(-c*d^2 - a*e^2)*arctan(-sqrt(-c*d^2 - a*e^2)*(c*d*x - a*e)*sqrt(c*x^2 + a)/(
c^2*d^2*x^2 + a*c*d^2 + (a*c*x^2 + a^2)*e^2)) + 3*(2*c*d^3 + 3*a*d*e^2)*sqrt(c)*log(-2*c*x^2 + 2*sqrt(c*x^2 +
a)*sqrt(c)*x - a) - 2*(3*c*d*x*e^2 - 6*c*d^2*e - 2*(c*x^2 + 4*a)*e^3)*sqrt(c*x^2 + a))*e^(-4), 1/6*(6*(c*d^2 +
 a*e^2)*sqrt(-c*d^2 - a*e^2)*arctan(-sqrt(-c*d^2 - a*e^2)*(c*d*x - a*e)*sqrt(c*x^2 + a)/(c^2*d^2*x^2 + a*c*d^2
 + (a*c*x^2 + a^2)*e^2)) + 3*(2*c*d^3 + 3*a*d*e^2)*sqrt(-c)*arctan(sqrt(-c)*x/sqrt(c*x^2 + a)) - (3*c*d*x*e^2
- 6*c*d^2*e - 2*(c*x^2 + 4*a)*e^3)*sqrt(c*x^2 + a))*e^(-4)]

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\left (a + c x^{2}\right )^{\frac {3}{2}}}{d + e x}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x**2+a)**(3/2)/(e*x+d),x)

[Out]

Integral((a + c*x**2)**(3/2)/(d + e*x), x)

________________________________________________________________________________________

Giac [A]
time = 1.22, size = 176, normalized size = 1.11 \begin {gather*} \frac {1}{2} \, {\left (2 \, c^{\frac {3}{2}} d^{3} + 3 \, a \sqrt {c} d e^{2}\right )} e^{\left (-4\right )} \log \left ({\left | -\sqrt {c} x + \sqrt {c x^{2} + a} \right |}\right ) + \frac {2 \, {\left (c^{2} d^{4} + 2 \, a c d^{2} e^{2} + a^{2} e^{4}\right )} \arctan \left (-\frac {{\left (\sqrt {c} x - \sqrt {c x^{2} + a}\right )} e + \sqrt {c} d}{\sqrt {-c d^{2} - a e^{2}}}\right ) e^{\left (-4\right )}}{\sqrt {-c d^{2} - a e^{2}}} + \frac {1}{6} \, \sqrt {c x^{2} + a} {\left ({\left (2 \, c x e^{\left (-1\right )} - 3 \, c d e^{\left (-2\right )}\right )} x + \frac {2 \, {\left (3 \, c^{2} d^{2} e^{7} + 4 \, a c e^{9}\right )} e^{\left (-10\right )}}{c}\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x^2+a)^(3/2)/(e*x+d),x, algorithm="giac")

[Out]

1/2*(2*c^(3/2)*d^3 + 3*a*sqrt(c)*d*e^2)*e^(-4)*log(abs(-sqrt(c)*x + sqrt(c*x^2 + a))) + 2*(c^2*d^4 + 2*a*c*d^2
*e^2 + a^2*e^4)*arctan(-((sqrt(c)*x - sqrt(c*x^2 + a))*e + sqrt(c)*d)/sqrt(-c*d^2 - a*e^2))*e^(-4)/sqrt(-c*d^2
 - a*e^2) + 1/6*sqrt(c*x^2 + a)*((2*c*x*e^(-1) - 3*c*d*e^(-2))*x + 2*(3*c^2*d^2*e^7 + 4*a*c*e^9)*e^(-10)/c)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {{\left (c\,x^2+a\right )}^{3/2}}{d+e\,x} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + c*x^2)^(3/2)/(d + e*x),x)

[Out]

int((a + c*x^2)^(3/2)/(d + e*x), x)

________________________________________________________________________________________